On weighted depths in random binary search trees

نویسندگان

  • Rafik Aguech
  • Anis Amri
  • Henning Sulzbach
چکیده

Following the model introduced by Aguech, Lasmar and Mahmoud [Probab. Engrg. Inform. Sci. 21 (2007) 133–141], the weighted depth of a node in a labelled rooted tree is the sum of all labels on the path connecting the node to the root. We analyze weighted depths of nodes with given labels, the last inserted node, nodes ordered as visited by the depth first search process, the weighted path length and the weighted Wiener index in a random binary search tree. We establish three regimes of nodes depending on whether the second order behaviour of their weighted depths follows from fluctuations of the keys on the path, the depth of the nodes, or both. Finally, we investigate a random distribution function on the unit interval arising as scaling limit for weighted depths of nodes with at most one child.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Profile and Height of Random Binary Search Trees

The purpose of this article is to survey recent results on distributional properties of random binary search trees. In particular we consider the profile and the height.

متن کامل

P´olya Urn Models and Connections to Random Trees: A Review

This paper reviews P´olya urn models and their connection to random trees. Basic results are presented, together with proofs that underly the historical evolution of the accompanying thought process. Extensions and generalizations are given according to chronology: • P´olya-Eggenberger’s urn • Bernard Friedman’s urn • Generalized P´olya urns • Extended urn schemes • Invertible urn schemes ...

متن کامل

Minimax Trees in Linear Time

A minimax tree is similar to a Huffman tree except that, instead of minimizing the weighted average of the leaves’ depths, it minimizes the maximum of any leaf’s weight plus its depth. Golumbic (1976) introduced minimax trees and gave a Huffman-like, O(n log n)-time algorithm for building them. Drmota and Szpankowski (2002) gave another O(n log n)-time algorithm, which checks the Kraft Inequali...

متن کامل

Extremal Weighted Path Lengths in Random Binary Search Trees

We consider weighted path lengths to the extremal leaves in a random binary search tree. When linearly scaled, the weighted path length to the minimal label has Dickman’s infinitely divisible distribution as a limit. By contrast, the weighted path length to the maximal label needs to be centered and scaled to converge to a standard normal variate in distribution. The exercise shows that path le...

متن کامل

Universal Limit Laws for Depths in Random Trees

Random binary search trees, b-ary search trees, median-of-(2k+1) trees, quadtrees, simplex trees, tries, and digital search trees are special cases of random split trees. For these trees, we offer a universal law of large numbers and a limit law for the depth of the last inserted point, as well as a law of large numbers for the height.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1707.00165  شماره 

صفحات  -

تاریخ انتشار 2017